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Abstract

In the paper an application of the interval fuzzy model (INFUMO) in fault detection for nonlinear systems with uncertain interval-

type parameters is presented. A confidence band for the input–output data, obtained in the normal operating conditions of a system, is

approximated using a fuzzy model with interval parameters. The approximation is based on linear programming using l1-norm as a

measure of the modelling error. Applying low-pass filtering when obtaining the confidence band makes it possible to use arbitrary sets of

identification input signals. An application of the INFUMO in a fault-detection system for a two-tank system is presented to

demonstrate the benefits of the proposed method.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Automated supervision and fault diagnosis are impor-
tant features in design of efficient and reliable production
systems. Fault detection (FD) problem for linear systems
has been extensively studied over the past three decades,
and a lot of powerful methods have been developed. For a
more thorough review, the reader is referred to survey
papers by Frank (1990), Isermann (1997), and Patton and
Chen (1997). However, the use of linear approaches is
limited if the system to be monitored is strongly nonlinear.
Since many industrial systems are nonlinear in nature, the
development of nonlinear FD methods plays a significant
role in practical applications. Recently, observer-based
approaches (Bastin and Gevers, 1988; Chen et al., 1996;
Hammouri et al., 1999), adaptive-residual-threshold ap-
proach (Frank and Ding, 1997), fuzzy-model-based (Ballé
and Fuessel, 2000; Amann et al., 2001) and neural-
network-based methods (Vemuri and Polycarpou, 2004;
Klančar et al., 2002) have been proposed. For more
information on the use of artificial intelligence in fault
e front matter r 2006 Elsevier Ltd. All rights reserved.
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detection the reader is referred to survey papers byAlcorta
Garcı́a and Frank (1997), Patton and Chen (1996), and
Frank and Köppen-Seliger (1997). Most of the above-
mentioned methods are based on a decoupling framework,
where the modelling uncertainty and all possible faults can
be decoupled through an appropriate coordinate transfor-
mation and residual generation technique. However, the
modelling uncertainty is often unstructured, which makes it
difficult to achieve exact decoupling between faults and
modelling errors. In addition, some problems taking into
consideration the input–output representation of systems
as well as the design of the corresponding nonlinear
observers are still open.
This paper presents a fault-detection scheme for non-

linear input–output systems with unstructured interval-
type uncertainties. A fault-detection method using non-
linear adaptive fault estimators for dealing with the same
system type was presented by Zhang et al. (2001). The
presented approach is based on the use of an interval fuzzy
model (INFUMO). Interval arithmetics has often been
used in system identification, see e.g. the work by Jaulin
and Walter (1993) and Malan et al. (1997), and fuzzy
systems are usually applied as a nonlinear function
estimators (Ying and Chen, 1997). As was introduced
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and shown by Škrjanc et al. (2005a), by applying only one
Takagi–Sugeno-type (Takagi and Sugeno, 1985) fuzzy
model with interval parameters, one is able to approximate
the upper and lower boundaries of the domain of functions
that result from an uncertain system. When system
parameters vary in a certain tolerance band, it is
advantageous to define a confidence band over a finite
set of input and output measurements in which the
effects of unknown process inputs are already included.
If the outer bounds of the set, obtained during fault-free
operating conditions, are determined, one is able to use
them as the bounds of the admissible output area, and
thus being able to create a simple and intuitive fault-
detection system. The main idea of theproposed approach
is to use the INFUMO as an admissible-filtered-
output estimator in a fault-detection system. By calculating
the normalized distance of the filtered system output
from the boundary model outputs, a residual function is
obtained.

The paper is organized in the following way. In Section 2
the system description, the main idea of interval fuzzy
model identification using l1-norm, the residual formation
with a fault-diagnostic scenario, and detectability issues are
described. Section 3 presents the two-tank system with
interval-type uncertain parameters, and the application to
fault detection with data pre-processing and low-pass
filtering is introduced. In the final part, some outlines of
future work are given.

2. Using the fuzzy interval model in fault detection

2.1. System description

Let the nonlinear system be given in a general form as
follows:

_xðtÞ ¼ sðx; u; tÞ þ Zðx; u; tÞ þ fðx; u; tÞ,

yðtÞ ¼ gðx; u; tÞ þ rðx; u; tÞ, (1)

where x 2 Rn is the state vector of the system, u 2 R is the
system input, y 2 R denotes the system output, Z : Rn �

R� Rþ ! Rn is the state disturbance, r : Rn � R� Rþ !

R is the output disturbance, f : Rn � R� Rþ ! Rn

denotes the fault function, and s : Rn � R� Rþ ! Rn

and g : Rn � R� Rþ ! R are the nonlinear functions of
the state vector, input and time, respectively. Let us assume
that only the system outputs can be directly measured.
Throughout the paper the following assumptions will be
made:

Assumption 1. The modelling uncertainties, represented by
Z and r in (1), are unstructured unknown nonlinear
functions of x, u and t, but bounded by some known
functionals (Zhang et al., 2001), i.e.,

jZðx; u; tÞjpZðy; u; tÞ; jrðx; u; tÞjprðy; u; tÞ

8ðx; y; uÞ 2 X�Y�U; 8tX0, ð2Þ
where the bounding functions Zðy; u; tÞ and rðy; u; tÞ are
known and uniformly bounded. X � Rn is some compact
domain of interest, and U � R and Y � R are the compact
sets of admissible inputs and outputs, respectively.

Note that Z and r are the functions of the output y

whereas Z and r are the functions of the state vector x. This
is due to the fact that the states are not directly measured.

Assumption 2. The output functions yðtÞ, when fðx;
u; tÞ ¼ 0, are bounded by the following interval:

yðtÞ 2 ½yðtÞ; yðtÞ� � Y. (3)

Assumption 1 characterizes the possible modelling
uncertainties as unstructured but bounded by some
constant or function, and Assumption 2 guarantees that
in the absence of faults the bounds of the interval can be
determined. As a consequence, a confidence band of
outputs guarantees that a process output exhibiting normal
behaviour is found in the interval ½y; y�. However, due to
the unknown effect of the actual disturbance functions the
exact bounds cannot be defined analytically. In the paper
by Fagarasan et al. (2004) two approaches to determine the
boundary functions have been proposed: empirical and
numerical. In the former approach, physical knowledge of
the uncertainties is used to adjust its values in the model.
The latter approach consists of using a constrained linear
optimization technique to minimize the model precision
objective function J ¼ ð1=NÞ

PN
i¼1ðyi � y

i
Þ, where yi and y

i
are the maximal and minimal output values that result
from different uncertainty values. The proposed approach,
introducing the interval fuzzy model, is qualitatively
different because the boundary responses will be obtained
by a fuzzy function approximation of the bounds of a set of
filtered input–output data that already comprises the
effects of disturbances.

As was shown by Ding et al. (1994) and Frank and Ding
(1997), a residual generator can be designed by

rðtÞ ¼ QðpÞðyðtÞ � ŷðtÞÞ, (4)

with ŷðtÞ as a process-output estimation and QðpÞ is a filter
which enhances the residual robustness to unknown
process inputs and is to be designed according to the
demands of the application. Since in this case only the
input and output data are available and the transfer
functions from the faults and disturbances are not known,
the above-mentioned approach is altered accordingly. The
main idea of the presented approach is to filter both the
input and output data through a low-pass filter in order to
get a static input–output mapping approximation. Since
the main role of the filter is to cut out the high-frequency
spectre of the data set, the design procedure is further
simplified by using a first-order filter. The data pairs uf ðiÞ

and yf ðiÞ, obtained in the normal operating conditions, i.e.,
in the absence of faults, are gathered in a set of the so-
called admissible input–output data. Robustness to the
effects of disturbances can be seen in the fact that the latter
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are already included in the set. If the set bounds are
modelled as a function of the system input, they can be
used online for residual formation

rf 1ðtÞ ¼ yf ðtÞ �QðpÞyðtÞ ¼ f ðuf ; tÞ �QðpÞyðtÞ,

rf 2ðtÞ ¼ QðpÞyðtÞ � y
f
ðtÞ ¼ QðpÞyðtÞ � f ðuf ; tÞ, ð5Þ

where

QðpÞ ¼
1

Tf pþ 1
(6)

and Tf denotes the time constant of the filter QðpÞ.
Filtering both the input and output signals before
calculation of the residuals further decreases the residual
sensitivity to false alarms, resulting from the disturbances.
2.2. Interval fuzzy model

The interval fuzzy model was introduced by Škrjanc
et al. (2005a) as a means of robust system identification,
and it was also used in the work by Škrjanc et al. (2005b) to
provide a functional description of a static nonlinear area
approximation.

In this paper the modelling of f ðuf ; tÞ and f ðuf ; tÞ in
(5) will be carried out using an interval fuzzy model. Note
that for the confidence-band identification a set of either
open-loop or closed-loop experiments in the absence of
faults have to be conducted, and the online fault detection
based on the obtained INFUMO can also be realized in
both systems.

The procedure of obtaining the exact lower and upper
bounds for the family of functions and assigning the
INFUMO to them will be briefly reviewed. Let C � R

be a compact set and G ¼ fgðzÞ : C ! Rg be a class of
nonlinear functions. Let us assume that there exist the
exact upper bound g and the exact lower bound g that
satisfy the following conditions for an arbitrary e40 and
for each z 2 C:

gðzÞXmax
g2G

gðzÞ; 9g 2 G : gðzÞogðzÞ þ e, (7)

gðzÞpmin
g2G

gðzÞ; 9g 2 G : gðzÞ4gðzÞ þ e. (8)

Obtaining the bounds in Eqs. (7) and (8) would require an
infinite amount of data; however, in this case we are limited
to the finite set of measured filtered output values Y ¼

fyf 1; yf 2; :::; yfNg and the finite set of filtered input data
Z ¼ fz1; z2; . . . ; zNg ¼ fuf 1; uf 2; . . . ; ufNg:

yfi ¼ gðziÞ; g 2 G; zi 2 C � R; yi 2 R; i ¼ 1; . . . ;N.

(9)

The exact upper and lower boundary functions will be
approximated by fuzzy functions, and the Stone–Weier-
strass theorem (Ying and Chen, 1997) is extended to prove
that there exist fuzzy systems f and f such that the bounds
of an arbitrary nonlinear area can be approximated with
any precision, i.e.,

0of ðziÞ � gðziÞoe 8i,

� eo f ðziÞ � gðziÞo0 8i. ð10Þ

In this paper an INFUMO TS-type model in affine form
with one antecedent variable will be assumed. It can be
given as a set of rules

Rj : if xp is Aj then f ðziÞ ¼ yf ¼ y
T

j xc; j ¼ 1; . . . ;m,

f ðziÞ ¼ y
f
¼ yTj xc; j ¼ 1; . . . ;m.

ð11Þ

The antecedent variable xp ¼ uf 2 R denotes the input or
variable in premise, and variables yf ; yf

2 R are the outputs
of the interval fuzzy model that provide the upper and lower
boundary function. The antecedent variable is connected
with m fuzzy sets Aj, and each fuzzy set Aj ðj ¼ 1; . . . ;mÞ is
associated with a real-valued function mAj

ðxpÞ : R! ½0; 1�,
that produces a membership grade of the variable xp with
respect to the fuzzy set Aj. The consequent vector is denoted
xT

c ¼ ½uf 1� 2 R2. As the output functions are in affine form,
1 was added to the vector xc. The system outputs are linear
combinations of the consequent states, and yj ; yj 2 R2 are
vectors of fuzzy parameters. The system in Eq. (11) can be
described in closed form

yf ¼ bTðxpÞYxc,

y
f
¼ bTðxpÞY xc, (12)

where Y
T
¼ ½y1; . . . ; ym� and YT ¼ ½y1; . . . ; ym� denote the

upper and lower coefficient matrices for the complete
set of rules, and bTðxpÞ ¼ ½b1ðxpÞ; . . . ;bmðxpÞ� is a vector of
normalized membership functions with elements that
indicate the degree of fulfilment of the respective rule.
Functions bjðxpÞ can be defined as

bjðxpÞ ¼
mAj
ðxpÞPm

j¼1mAj
ðxpÞ

; j ¼ 1; . . . ;m, (13)

if the partition of unity is assumed. Note that bjðxpÞ and xc

are equal in both the upper and lower boundary-function
calculations in (12).
The membership functions mAj

ðxpÞ and the fuzzy para-
meters in Y;Y of the proposed INFUMO have to be
determined for optimal approximation of the bounds.
While the proper arrangement and shape of the member-
ship functions will not be considered—the mentioned can
be approached by different clustering methods (Babuška,
1998)—for the optimal fuzzy parameters the minimization
of the maximum modelling error e in Eq. (10) over the
whole input set Z is performed. This implies the min–max
optimization method, and l1-norm is used as the model-
ling error measure, yielding

min
Y

max
zi2Z
jyi � f ðziÞj s:t: yi � f ðziÞX0,

min
Y

max
zi2Z
jyi � f ðziÞj s:t: yi � f ðziÞp0, (14)
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where f ðziÞ ¼ bT Y xcðziÞ and f ðziÞ ¼ bTYxcðziÞ. Note that
the data are obtained by sampling different functions from
G with arbitrary values of zi. The solutions to both
problems can be found by linear programming, because
both problems can be viewed as linear programming
problems. This brings simplicity to the realization of the
optimizing process. However, large data sets and a large
number of parameters will still pose a threat to optimiza-
tion convergence. In the first case the problems are
approached with data-reduction methods, and in the latter
case, on the other hand, solutions to reduce the number of
parameters have to be found.
2.3. Formation of the proposed fault-detection system

When the parameter identification is done, the INFU-
MO is connected to the process in parallel to get online
estimations of the boundary outputs. In terms of fault
detection, the decision function should consist of verifying
that each measurement belongs to the corresponding
confidence band. In order to provide normalized quanti-
tative information about the proximity of the measure-
ments to the closest interval bound, distances were used, as
presented by Fagarasan et al. (2004). If a filtered output
value yf ðtÞ belongs to an interval ½y

f
ðtÞ; yf ðtÞ�, and if ~yf ðtÞ

denotes the mean interval value

~yf ðtÞ ¼
yf ðtÞ þ y

f
ðtÞ

2
(15)

the proposed distance is defined in the following way:

if yf ðtÞo ~yf ðtÞ; dðyf Þ ¼
yf ðtÞ � ~yf ðtÞ

y
f
ðtÞ � ~yf ðtÞ

,

if yf ðtÞ4 ~yf ðtÞ; dðyf Þ ¼
yf ðtÞ � ~yf ðtÞ

yf ðtÞ � ~yf ðtÞ
. (16)

The distance in (16) is zero when the measurement is equal
to ~yf , and approaches the value 1 if the measurement is
close to one of the interval bounds. A fault is signalled
every time dðyf Þ exceeds the value 1. Fig. 1 gives a
schematic representation of the proposed fault-detection
system. The filter QðpÞ is represented by a block denoted
LPF (low pass filter), and the distance is calculated in the
DIST block.
PROCESS

INFUMO
MODEL

LPF LPF

ypu

yf

yf

uf
DIST

d(yf)

yf

Fig. 1. Fault-detection system using static INFUMO model.
2.3.1. Detectability properties

To study the detectability properties of the proposed
method the worst-case scenario will be considered. In this
sense the following theorem guarantees detectability of a
fault f:

Theorem 1. Let the contribution of a fault fðx; u; tÞ to the

filtered process output be denoted yff ðtÞ, and the difference

between the boundary functions yf ðtÞ � y
f
ðtÞ ¼ lðtÞ. A fault

will certainly be detected if the absolute value of the former is

greater than the width of the output confidence band, i.e.

jyff ðtÞj4lðtÞ. (17)

Proof. For the purpose of fault-detectability analysis, the
output function in Eq. (1) will be rewritten to

yf ðtÞ ¼ QðpÞ � yðtÞ ¼ y0f ðtÞ þ rf ðtÞ þ yff ðtÞ, (18)

where y0f ðtÞ;rf ðtÞ and yff ðtÞ denote the filtered contribu-
tions of the ‘‘undisturbed’’ output, disturbances and fault,
respectively. Since the upper and lower confidence-band
bounds yf ðtÞ and y

f
ðtÞ were obtained in the experiments

where no faults were present, the following inequalities
hold:

y0f ðtÞ þ rf ðtÞ � y
f
ðtÞX0,

yf ðtÞ � y0f ðtÞ � rf ðtÞX0. (19)

By adding the fault contribution yff ðtÞ to both sides of
(19), the following can be written:

y0f ðtÞ þ yff ðtÞ þ rf ðtÞ � y
f
ðtÞXyff ðtÞ ) yff ðtÞpyf ðtÞ � y

f
ðtÞ,

yf ðtÞ � y0f ðtÞ � rf ðtÞ � yff ðtÞX� yff ðtÞ ) yf ðtÞ � yf ðtÞ

X� yff ðtÞ. ð20Þ

Hence, yff ðtÞ is bounded by yf ðtÞ � yf ðtÞpyff ðtÞp
yf ðtÞ � y

f
ðtÞ. When no fault is detected, i.e., y

f
ðtÞp

yf ðtÞpyf ðtÞ, inequality (20) can be further extended to

yff ðtÞpyf ðtÞ � y
f
ðtÞ ¼ ðyf ðtÞ � y

f
ðtÞÞ þ ðyf ðtÞ � yf ðtÞÞ

¼ lðtÞ þ yf ðtÞ � yf ðtÞ
� �

plðtÞ þ 0

¼ lðtÞ,

�yff ðtÞpyf ðtÞ � yf ðtÞ ¼ ðyf ðtÞ � y
f
ðtÞÞ þ ðy

f
ðtÞ � yf ðtÞÞ

¼ lðtÞ þ ðy
f
ðtÞ � yf ðtÞÞplðtÞ þ 0

¼ lðtÞ. ð21Þ

Both inequalities in (21) can be united to

jyff ðtÞjplðtÞ. (22)

When a fault is not detected, inequality (22) is satisfied,
thus implying that in the case when jyff ðtÞj4lðtÞ the fault
is certainly detected.
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Remark 1. If the steady-state gain of the filter is
QðsÞjs¼0 ¼ 1, and if

Z 1
1=T

jYfðoÞj2 do5
Z 1=T

0

jYfðoÞj2 do (23)

holds for any yfðtÞ, i.e., the dominant part of spectral
power density is at low frequencies with respect to the LPF
bandwidth 1=T , then yff ðtÞ¼

:
yfðtÞ and the condition in (22)

can be extended to jyfðtÞjpl0ðtÞ where l0ðtÞ¼: lðtÞ.

3. Simulation example

In this section the benefits of the proposed method will
be illustrated by a simulation example. A well-known
benchmark problem will be considered. It deals with a
laboratory plant using two tanks with fluid flow, as was
described by Zhang et al. (2004). The two cylindrical tanks
are identical, with a cross section As ¼ 0:0154 m2. The
cross section of the connection pipe and the outlet pipe is
Sp1 ¼ Sp2 ¼ 3:6� 10�5 m2, and the liquid levels in the two
tanks are denoted h1 and h2, respectively. The plant-setup
scheme is presented in Fig. 2. The supplying flow rates
coming from an electric pump to tank 1 are denoted q1ðtÞ,
and there is an outflow from tank 2 denoted q2ðtÞ. Using
the mass balance equations and Toricelli’s rule, the
following equations are obtained:

_h1 ¼
1

As

ð�Kp1signðh1 � h2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gjh1 � h2j

p
þ q1Þ,

_h2 ¼
1

As

ðKp1signðh1 � h2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gjh1 � h2j

p
� Kp2

ffiffiffiffiffiffiffiffiffiffi
2gh2

p
Þ,

(24)

where Kp1 ¼ a1Sp1 and Kp2 ¼ a2Sp2 denote the outflow
constants, and g is the gravity acceleration. Let a1 ¼ a2 ¼ 1
for the sake of simplicity.

To get an input–output system that is similar to
industrial processes the model will be modified in the
following way. The input to the system is the electric-pump
ASAS
Sp1 Sp2

u1(t)

q1(t)

q1(t)

q2(t)
u2(t)tank 1

tank 2

h2(t)h1(t)

Fig. 2. Two-tank laboratory plant.
voltage u1ðtÞ that produces the inlet flow

q1ðtÞ ¼ Kuð1þ n1ðtÞÞu1ðtÞ, (25)

where Ku is the voltage-to-flow-conversion constant, and
n1ðtÞ denotes the inaccuracy of the conversion. The only
measurable output signal is the voltage of the pressure
sensor, converting the fluid level h2ðtÞ in tank 2 into the
output voltage u2ðtÞ according to the following equation:

u2ðtÞ ¼ Khð1þ n2ðtÞÞh2ðtÞ, (26)

where Kh is the height-to-voltage-conversion constant,
and n2ðtÞ denotes the inaccuracy of the conversion. The
values of the constants are Ku ¼ 8:8� 10�6 m3=Vs and
Kh ¼ 16:667V=m, and the upper bounds of the inaccura-
cies are n1 ¼ n2 ¼ 0:03.
The set of faults under consideration will follow the

examples presented in Zhang et al. (2002, 2004). It will
consist of the following faults:
�
 Actuator fault in the pump: A simple multiplicative
actuator fault is assumed by letting the actual inlet flow
be described by q1ðtÞ ¼ q1ðtÞ þ ð1� Kf Þq1ðtÞ, where q1ðtÞ

is the flow in the non-fault case, and Kf 2 ½0; 1� is the
fault constant.

�
 Leakage in tank 1: The leak is assumed to be circular

in shape and of unknown radius r1. As a consequence,
the outflow rate of the unknown-size leak is qf 1 ¼

a1pðr1Þ
2
ffiffiffiffiffiffiffiffiffiffi
2gh1

p
.

�
 Leakage in tank 2: Analogously to the case of leakage in
tank 1, the outflow rate is qf 2 ¼ a2pðr2Þ

2
ffiffiffiffiffiffiffiffiffiffi
2gh2

p
.

With reference to the given INFUMO identification
procedure, a confidence band of input–output data must
be defined. This band will also include all unexpected
output deviations due to parameter uncertainties. A set of
20 experiments was carried out. The inputs and associated
output signals are shown in Fig. 3. For the sake of brevity,
only the first, the second, and the last data sets are
presented. One of the major benefits of the interval fuzzy
model identification, shown in Fig. 3, is that the input
signals can be arbitrary.
According to Eq. (4), the input and output signals are

subjected to low-pass filtering (LPF). The structure of the
LPF was chosen as a simple first-order system, represented
by the transfer function in Eq. (6). The optimal design of
the LPF time constant Tf was not considered in this study.
The filter can also be seen as a means of trade-off between
the fault-detecting speed and robustness to false alarms.
The cut-off frequency of was chosen according to the
absolute values of the Fourier transforms of the output
signals, as presented in Fig. 4. Hence, the filter time
constant was defined as Tf ¼ 1=of ¼ 476 s. The lower
diagram of Fig. 4 demonstrates the absolute values of the
Fourier transforms of the filtered outputs. This way a
compact set of measurements that represents steady-state
system behaviour is obtained. It can be seen as an
approximation of a static input–output mapping area.
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Fig. 4. The choice of the filter cut-off frequency.
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Fig. 6. Membership-function arrangement and test experiment signals.
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The identification experiments resulted in a huge set of
data. To avoid the problems with optimization conver-
gence, data reduction is performed by determining the
boundary points. Firstly, the range of input measurements
is divided into equidistant subspaces. The length of the
step is chosen according to the subspace with the highest
density of data. In each subspace the extremal points are
determined. The input–output data is presented in Fig. 5,
and the resulting set of 302 boundary points is emphasized.
These data were used as the training data set for the
INFUMO identification. A static INFUMO can be
employed. This brings additional reduction of the number
of fuzzy parameters to be optimized. The membership
functions of the INFUMO antecedent variables were of
triangular shape and arranged using grid partitioning
(Babuška, 1998). According to the data-area shape, it
was sufficient to use four fuzzy subsets for the upper and
lower fuzzy functions.
The parameters were optimized using the proposed

INFUMO optimization algorithm in Eq. (14). The result-
ing boundary functions can be seen in Fig. 5. It is evident
that the min–max optimization gave satisfactory results in
approximating the given area.
To realize a fault-detection system, INFUMO is

connected to the process in parallel, as shown in Fig. 1.
In the test experiment a 20% actuator fault ðKf ¼ 0:2Þ
is assumed to occur in time period tact ¼ 8000215 000 s, a
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Fig. 7. Results of the fault detection system.
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leakage of r1 ¼ 3� 10�3 m in tank 1 at tleak1 ¼

25 000230 000 s, and a leakage of r2 ¼ 3� 10�3 m in tank
2 at tleak2 ¼ 40 000245 000 s, respectively. The input test
signal and the corresponding process output signal are
presented in the lower plot of Fig. 6. The results of the test
run can be seen in Fig. 7. The first diagram demonstrates
the calculation of the distance function, and in the second
diagram time-dependent courses of the filtered process
output yf and the INFUMO boundary functions yf ; yf

are
shown. It is evident that the proposed FD system
successfully tracks the filtered output crossing of the
permitted band, denoting the expected normal system
behaviour. In the shaded areas, i.e., where the faults
from the fault set occurred, fault is declared with reason-
ably small time delays, depending on the time constant of
the proposed low-pass filter: 467.7, 288.0, and 380.2 s,
respectively.

4. Conclusion

A novel approach of the fault-detection system design
for nonlinear input–output systems was presented. The
interval fuzzy model (INFUMO), which is suitable for
robust identification of nonlinear functions, was applied to
the residual generation and decision stages. The benefit in
fault detection is to be able to directly model a family of
fault-free system responses from the confidence band,
which already includes the effects of uncertainties, based
only on the input–output data. Employing the low-pass
filtering to obtain the input–output data set, relatively
simple fuzzy functions are sufficient to provide a fairly
efficient fault-detection system.

The filter served as a trade-off between the speed of the
FD-system and robustness to false alarms; however,
investigating the performance resulting from different
choices of filter structure, the extension of the presented
INFUMO-based FD method to fault isolation, and
investigating possible extensions to frequency-based meth-
ods and fault-tolerant control deserves further attention. In
addition, the results of the simulated example demonstrate
the quality of performance coupled with simplicity of
application, which is very important from the application
point of view.
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